Перевод: с английского на все языки

со всех языков на английский

Catalogue of Scientific Papers

  • 1 Wollaston, William Hyde

    SUBJECT AREA: Metallurgy
    [br]
    b. 6 August 1766 East Dereham, Norfolk, England
    d. 22 December 1828 London, England
    [br]
    English chemist and metallurgist who discovered palladium and rhodium, pioneer in the fabrication of platinum.
    [br]
    Wollaston qualified in medicine at Cambridge University but gave up his practice in 1800 to devote himself to chemistry and metallurgy, funded from the profits from making malleable platinum. In partnership with Smithson Tennant, a friend from his Cambridge days, he worked on the extraction of platinum by dissolving it in aqua regia. In 1802 he found that in addition to platinum the solution contained a new metal, which he named palladium. Two years later he identified another new metal, rhodium.
    Wollaston developed a method of forming platinum by means of powder metallurgy and was the first to produce malleable and ductile platinum on a commercial scale. He produced platinum vessels for sulphuric acid manufacture and scientific apparatus such as crucibles. He devised an elegant method for forming fine platinum wire. He also applied his inventive talents to improving scientific apparatus, including the sextant and microscope and a reflecting goniometer for measuring crystal angles. In 1807 he was appointed Joint Secretary of the Royal Society with Sir Humphry Davy, which entailed a heavy workload and required them to referee all the papers submitted to the Society for publication.
    Wollaston's output of platinum began to decline after 1822. Due to ill health he ceased business operations in 1828 and at last made public the details of his secret platinum fabrication process. It was fully described in the Bakerian Lecture he delivered to the Royal Society on 28 November 1828, shortly before his death.
    [br]
    Principal Honours and Distinctions
    FRS 1793.
    Bibliography
    His scientific papers were published in various journals, nearly all listed in the Royal Society Catalogue of Scientific Papers.
    Further Reading
    There is no good general biography, the best general account being the entry in
    Dictionary of Scientific Biography.
    D.McDonald, 1960, A History of Platinum from the Earliest Times to the Eighteen- Eighties, London (provides a good discussion of his work on platinum).
    M.E.Weeks, 1939, "The discovery of the elements", Journal of Chemical Education: 184–5.
    ASD

    Biographical history of technology > Wollaston, William Hyde

  • 2 Daniell, John Frederick

    SUBJECT AREA: Electricity
    [br]
    b. 12 March 1790 London, England
    d. 13 March 1845 London, England
    [br]
    English chemist, inventor of the Daniell primary electric cell.
    [br]
    With an early bias towards science, Daniell's interest in chemistry was formed when he joined a relative's sugar-refining business. He formed a lifelong friendship with W.T.Brande, Professor of Chemistry at the Royal Institution, and together they revived the journal of the Royal Institution, to which Daniell submitted many of his early papers on chemical subjects. He made many contributions to the science of meteorology and in 1820 invented a hydrometer, which became widely used and gave precision to the measurement of atmospheric moisture. As one of the originators of the Society for Promoting Useful Knowledge, Daniell edited several of its early publications. His work on crystallization established his reputation as a chemist and in 1831 he was appointed the first Professor of Chemistry at King's College, London, where he was largely responsible for establishing its department of applied science. He was also involved in the Chemical Society of London and served as its Vice-President. At King's College he began the research into current electricity with which his name is particularly associated. His investigations into the zinc-copper cell revealed that the rapid decline in power was due to hydrogen gas being liberated at the positive electrode. Daniell's cell, invented in 1836, employed a zinc electrode in dilute sulphuric acid and a copper electrode in a solution of copper sulphate, the electrodes being separated by a porous membrane, typically an unglazed earthenware pot. He was awarded the Copley Medal of the Royal Society for his invention which avoided the "polarization" of the simple cell and provided a further source of current for electrical research and for commercial applications such as electroplating. Although the high internal resistance of the Daniell cell limited the current and the potential was only 1.1 volts, the voltage was so unchanging that it was used as a reference standard until the 1870s, when J. Lattimer Clark devised an even more stable cell.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Royal Society Rumford Medal 1832, Copley Medal 1837, Royal Medal 1842.
    Bibliography
    1836, "On voltaic combinations", Phil. Transactions of the Royal Society 126:107–24, 125–9 (the first report of his experiments).
    Further Reading
    Obituary, 1845, Proceedings of the Royal Society, 5:577–80.
    J.R.Partington, 1964, History of Chemistry, Vol. IV, London (describes the Daniell cell and his electrical researches).
    B.Bowers, 1982, History of Electric Light and Power, London.
    GW

    Biographical history of technology > Daniell, John Frederick

  • 3 Pattinson, Hugh Lee

    SUBJECT AREA: Metallurgy
    [br]
    b. 25 December 1796 Alston, Cumberland, England
    d. 11 November 1858 Scot's House, Gateshead, England
    [br]
    English inventor of a silver-extraction process.
    [br]
    Born into a Quaker family, he was educated at private schools; his studies included electricity and chemistry, with a bias towards metallurgy. Around 1821 Pattinson became Clerk and Assistant to Anthony Clapham, a soap-boiler of Newcastle upon Tyne. In 1825 he secured appointment as Assay Master to the lords of the manor of Alston. There he was able to pursue the subject of special interest to him, and in January 1829 he devised a method of separating silver from lead ore; however, he was prevented from developing it because of a lack of funds.
    Two years later he was appointed Manager of Wentworth Beaumont's lead-works. There he was able to continue his researches, which culminated in the patent of 1833 enshrining the invention by which he is best known: a new process for extracting silver from lead by skimming crystals of pure lead with a perforated ladle from the surface of the molten silver-bearing lead, contained in a succession of cast-iron pots. The molten metal was stirred as it cooled until one pot provided a metal containing 300 oz. of silver to the ton (8,370 g to the tonne). Until that time, it was unprofitable to extract silver from lead ores containing less than 8 oz. per ton (223 g per tonne), but the Pattinson process reduced that to 2–3 oz. (56–84 g per tonne), and it therefore won wide acceptance. Pattinson resigned his post and went into partnership to establish a chemical works near Gateshead. He was able to devise two further processes of importance, one an improved method of obtaining white lead and the other a new process for manufacturing magnesia alba, or basic carbonate of magnesium. Both processes were patented in 1841.
    Pattinson retired in 1858 and devoted himself to the study of astronomy, aided by a 7½ in. (19 cm) equatorial telescope that he had erected at his home at Scot's House.
    [br]
    Principal Honours and Distinctions
    Vice-President, British Association Chemical Section 1838. Fellow of the Geological Society, Royal Astronomical Society and Royal Society 1852.
    Bibliography
    Pattinson wrote eight scientific papers, mainly on mining, listed in Royal Society Catalogue of Scientific Papers, most of which appeared in the Philosophical
    Magazine.
    Further Reading
    J.Percy, Metallurgy (volume on lead): 121–44 (fully describes Pattinson's desilvering process).
    Lonsdale, 1873, Worthies of Cumberland, pp. 273–320 (contains details of his life). T.K.Derry and T.I.Williams, 1960, A Short History ofTechnology, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Pattinson, Hugh Lee

  • 4 Jacobi, Moritz Hermann von

    SUBJECT AREA: Electricity
    [br]
    b. 21 September 1801 Potsdam, Germany
    d. 27 February 1874 St Petersburg, Russia
    [br]
    German scientist who developed one of the first practical electric motors.
    [br]
    After studying architecture at Göttingen University, Jacobi turned his attention to physics and chemistry. In 1835 he was appointed a professor of civil engineering at the University of Dorpat (which later assumed the Estonian name of Tartu). Later, moving to St Petersburg, he became a member of the Imperial Academy of Sciences and commenced research on electricity and its practical applications. In December 1834 Jacobi presented a paper to the Academy of Sciences in Paris in which he stated that he had obtained rotation by electromagnetic methods in May of that year. Tsar Nicholas of Russia gave him a grant to prove that his electric motor had a practical application. Jacobi had a boat constructed that measured 28 ft in length and was propelled by paddles connected to an electric motor of his own design. Powered by Grove cells, it carried about fourteen passengers at a speed of almost 3 mph (5 km/h) on the River Neva. The weight of and possibly the fumes from the batteries contributed to the abandonment of the project. In 1839 Jacobi introduced electrotyping, i.e. the reproduction of forms by electrodeposition, which was one of the first commercial applications of electricity. In 1840 he reported the results of his investigations into the power of the electromagnet as a function of various parameters to the British Association.
    [br]
    Principal Honours and Distinctions
    Member, Imperial Academy of Sciences, St Petersburg, 1847.
    Bibliography
    Jacobi's papers are listed in Catalogue of Scientific Papers, 1868, Vol. III, London: Royal Society, pp. 517–18.
    1837, Annals of Electricity 1:408–15 and 419–44 (describes his motor).
    Further Reading
    E.H.Huntress, 1951, in Proceedings of the American Academy of Arts and Sciences 79: 22–3 (a short biography).
    B.Bowers, 1982, A History of Electric Light and Power, London.
    GW

    Biographical history of technology > Jacobi, Moritz Hermann von

  • 5 Strachey, Christopher

    [br]
    b. 16 November 1916 England
    d. 18 May 1975 Oxford, England
    [br]
    English physicist and computer engineer who proposed time-sharing as a more efficient means of using a mainframe computer.
    [br]
    After education at Gresham's School, London, Strachey went to King's College, Cambridge, where he completed an MA. In 1937 he took up a post as a physicist at the Standard Telephone and Cable Company, then during the Second World War he was involved in radar research. In 1944 he became an assistant master at St Edmunds School, Canterbury, moving to Harrow School in 1948. Another change of career in 1951 saw him working as a Technical Officer with the National Research and Development Corporation, where he was involved in computer software and hardware design. From 1958 until 1962 he was an independent consultant in computer design, and during this time (1959) he realized that as mainframe computers were by then much faster than their human operators, their efficiency could be significantly increased by "time-sharing" the tasks of several operators in rapid succession. Strachey made many contributions to computer technology, being variously involved in the design of the Manchester University MkI, Elliot and Ferranti Pegasus computers. In 1962 he joined Cambridge University Mathematics Laboratory as a senior research fellow at Churchill College and helped to develop the programming language CPL. After a brief period as Visiting Lecturer at the Massachusetts Institute of Technology, he returned to the UK in 1966 as Reader in Computation and Fellow of Wolfeon College, Oxford, to establish a programming research group. He remained there until his death.
    [br]
    Principal Honours and Distinctions
    Distinguished Fellow of the British Computer Society 1972.
    Bibliography
    1961, with M.R.Wilkes, "Some proposals for improving the efficiency of Algol 60", Communications of the ACM 4:488.
    1966, "Systems analysis and programming", Scientific American 25:112. 1976, with R.E.Milne, A Theory of Programming Language Semantics.
    Further Reading
    J.Alton, 1980, Catalogue of the Papers of C. Strachey 1916–1975.
    M.Campbell-Kelly, 1985, "Christopher Strachey 1916–1975. A biographical note", Annals of the History of Computing 7:19.
    M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Strachey, Christopher

См. также в других словарях:

  • Scientific revolution — This article is about a period in the history of science. For the process of scientific progress via revolution, proposed by Thomas Kuhn, see Paradigm shift …   Wikipedia

  • Scientific literature — This article talks about the general structure of the production and use of scientific literature. For information on particular types, see the article for the type. For information about journal article databases, and abstract and indexing… …   Wikipedia

  • The Vatican as a Scientific Institute —     The Vatican Palace, as a Scientific Institute     † Catholic Encyclopedia ► The Vatican Palace, as a Scientific Institute     Regarded from the point of view of scientific productivity, the Vatican is the busiest scientific workshop in Rome.… …   Catholic encyclopedia

  • Charles Grafton Page — (January 25, 1812 in Salem, Massachusetts – May 5, 1868 in Washington, D.C.) was an American electrical experimenter and inventor, physician, patent examiner, patent advocate, and professor of chemistry. Charles Grafton Page …   Wikipedia

  • Information science — Not to be confused with Information theory. Contents 1 Introduction 2 A multitude of information sciences? 3 Definitions of information science 4 History …   Wikipedia

  • George Gabriel Stokes — Infobox Scientist box width = 300px name = George Stokes image size = 220px caption = Sir George Gabriel Stokes, 1st Baronet (1819–1903) birth date = birth date|1819|8|13|df=y birth place = Skreen, County Sligo, Ireland death date = death date… …   Wikipedia

  • Natal Observatory — Location Durban, South Africa Coordinates …   Wikipedia

  • Jean Nicolas Pierre Hachette — (May 6, 1769 January 16, 1834), French mathematician, was born at Mezières, where his father was a bookseller.For his early education he proceeded first to the college of Charleville, and afterwards to that of Reims. In 1788 he returned to… …   Wikipedia

  • Jean-Baptiste Dumas —     Jean Baptiste Dumas     † Catholic Encyclopedia ► Jean Baptiste Dumas     Distinguished French chemist and senator, b. at Alais, department of Gard, 14 July, 1800; d. at Cannes, 10 April, 1884. Like many other distinguished chemists, Dumas… …   Catholic encyclopedia

  • John Farey, Sr. — John Farey, Sr. (1766 – January 6, 1826), was an English geologist and writer. However, he is better known for a mathematical construct, the Farey series named after him.BiographyHe was born at Woburn in Bedfordshire and was educated at Halifax… …   Wikipedia

  • Amédée Mouchez — Infobox Scientist name = Amédée Mouchez birth date = August 24, 1821 birth place = Madrid, Spain death date = June 29, 1892 death place = Wissous, Seine et Oise residence = France citizenship = nationality = ethnicity = French fields = Astronomy… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»